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Division and square root are important operations in many high performance signal processing ap-
plications including matrix inversion, vector normalization, least squares lattice filters and Cholesky
decomposition. We have implemented floating point division and square root designs for our VHDL
variable precision floating point library. These designs are implemented in VHDL and are designed
to make efficient use of FPGA hardware.

Both the division [1] and square root [2] algorithms are based on table lookup and Taylor series
expansion. These algorithms are particularly well-suited for implementation on an FPGA with
embedded RAM and embedded multipliers such as the Altera Stratic and Xilinx Virtex2 devices.
The division and square root components have been incorporated into the framework of our variable
precision floating-point library.

1 Variable Precision Floating-Point Library

Our parameterized floating-point library is composed of three parts: format control, arithmetic op-
erations, and format conversion. Format control includes modules denorm and rnd norm. The first
is used for denormalizing (introduction of the implied one bit) and the second is used for rounding
and normalizing. Format conversion includes modules fix2float and float2fix. The first is used
for converting from fixed-point representation (both unsigned and signed) to floating-point repre-
sentation and the second converts in the other direction. Arithmetic operations include modules
fp add, fp sub and fp mul for floating-point addition, subtraction and multiplication respectively.
We recently added floating-point division (fp div) and floating-point square root (fp sqrt). For
both floating-point division and square root, we use the small table-lookup method with small mul-
tipliers [1, 2]. These algorithms are both small and elegant. Our result shows that these algorithms
are very well suited to FPGA implementations, and lead to a good tradeoff of area and latency.
Some features of our library are:

• Our parameterized floating-point library is a superset of all the previously published floating-
point formats including IEEE standard format.

• Our library is flexible. It supports the creation of custom format floating-point datapaths, as
well as hybrid fixed and floating-point implementations.

• Our library is more complete than all other earlier work with a separate normalization unit,
rounding with support for both “round to zero” and “round to nearest”, and some error
handling features.

• Each component in our library has synchronization signals to aid in the creation of pipelines.

2 Division and Square Root

The division and square root we built are based on previously published algorithms [1, 2]. Both of
these algorithms are based on Taylor Series and use both small table-lookups and small multipliers
to obtain the first few terms of the Taylor Series. These algorithms are both simple and elegant,
and very well suited to FPGA implementations. They are also non-iterative algorithms, unlike
other implementations of division and square root based on Newton-Raphson. This allows these
components to be easily integrated into a larger pipelined design built with other library modules
without decreasing the throughput of the whole design.
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Table 1: Cost and Performance for Floating-Point Division
Floating Point Format 8(2,5) 16(4,11) 24(6,17) 32(8,23)

number of slices 69 (1%) 110 (1%) 254 (1%) 335 (2%)
number of BlockRAM 1 (1%) 1 (1%) 1 (1%) 7 (7%)

number of 18x18 embedded multiplier 2 (2%) 2 (2%) 8 (8%) 8 (8%)
clock period (ns) 8 10 9 9

maximum frequency (MHz) 124 96 108 110
number of clock cycles to generate final results 10 10 14 14
latency(ns) = clock × number of clock cycles 80 105 129 127

throughput (million results per second) 124 96 108 110

Table 1 shows the cost and performance of four different floating-point formats (including IEEE
single precision format) for division. Results for square root are similar. All our designs are specified
in VHDL and mapped to Xilinx Virtex-II XC2v3000-4 FPGA. All area and timing results in the
above tables are those reported by the Xilinx tools. Our results show that both the area and the
latency of our floating-point division and square root implementations are small. For IEEE single
precision format division, it takes 14 clock cycles to generate final results with a 9ns clock period,
so the latency is only 127ns. Since it can be fully pipelined, the throughput is high at 110 million
results per second. This design takes only 2% of the slices, 7% of the BlockRAMs, and 8% of the
18x18 embedded multipliers on the FPGA chip, which is a very small design. Our floating-point
square root shows the similar good tradeoff of area, latency and throughput.

To demonstrate the division implementation, we are incorporating it into our implementation of
the K-means clustering algorithm applied to multispectral satellite images [3] K-means clustering is
an iterative algorithm where the total number of clusters is known in advance. The algorithm works
as follows. First means are initialized using a hierarchical method. During each iteration, each pixel
of the image is assigned to the closest cluster based on the distance between each pixel and each of
the K cluster centers. At the end of one iteration, the new mean of each cluster is calculated based
on the new pixel assignments and is used for the next iteration as the center of each cluster. To
obtain the new mean of each cluster, an accumulator and a counter are associated with each cluster.
Once a pixel is assigned to a cluster, the value of the pixel is added to the accumulator and the
counter is incremented. The new mean is obtained by dividing the accumulator value by the counter
value. In our previous design [3] this mean updating step is done on the host because it requires
floating-point division. With our new fp div module, we are able to implement the mean updating
in FPGA hardware. This greatly reduces the communication between host and FPGA board and
further accelerates the runtime.
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Variable Precision Floating Point 
Library

� A library of fully pipelined and parameterized floating 
point modules

� Implementations well suited for state of the art 
FPGAs

– Xilinx Virtex II FPGAs and Altera Stratix devices
– Embedded Multipliers and Block RAM

� Signal/image processing algorithms accelerated 
using this library
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Why Floating Point (FP) ?

Fixed Point

� Limited range
� Number of bits grows 

for more accurate 
results

� Easy to implement in 
hardware

Floating Point

� Dynamic range
� Accurate results
� More complex and 

higher cost to 
implement in hardware
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Floating Point Representation

+/- e+bias f

Sign
Biased 
exponent

Mantissa m=1.f
(the 1 is hidden)

32-bits:

64-bits:

8 bits, bias=127

11 bits, bias=1023

23+1 bits, IEEE single-precision format

52+1 bits, IEEE double-precision format

(-1)s * 1.f * 2e-BIAS
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Why Parameterized FP ?

� Minimize the bitwidth of each signal in the datapath
– Make more parallel implementations possible
– Reduce the power dissipation

� Further acceleration
– Custom datapaths built in reconfigurable hardware using 

either fixed-point or floating point arithmetic
– Hybrid representations supported through fixed-to-float and 

float-to-fixed conversions
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Parameterized FP Modules

� Arithmetic operation
– fp_add : floating point addition
– fp_sub : floating point subtraction
– fp_mul : floating point multiplication
– fp_div : floating point division
– fp_sqrt : floating point square root

� Format control
– denorm : introducing implied integer digit
– rnd_norm : rounding and normalizing

� Format conversion
– fix2float : converting from fixed point to floating point
– float2fix : converting from floating point to fixed point
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What Makes Our Library Unique ?

� A superset of all floating point formats 
– including IEEE standard format

� Parameterized for variable precision arithmetic
– Support custom floating point datapaths
– Support hybrid fixed and floating point implementations 

� Support fully pipelining
– Synchronization signals 

� Complete
– Separate normalization
– Rounding (“round to zero” and “round to nearest”)
– Some error handling
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Generic Library Component

� Synchronization signals for pipelining
– READY and DONE

� Some error handling features
– EXCEPTION_IN and EXCEPTION_OUT
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One Example 
- Assembly of Modules

DENORM
exp_bits=8

man_bits=23

DENORM
exp_bits=8

man_bits=23

FP_ADD
exp_bits=8

m an_bits=24

RND_NORM
exp_bits=8

man_bits_in=25
man_bits_out=23

Norm alized IEEE single
precision values

Norm alized IEEE single
precision sum

IEEE single
precision adder

2 × denorm

+ 1 × fp_add
+ 1 × rnd_norm

= 1 × IEEE single 
precision adder
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Another Example 
- Floating Point Multiplier

(-1)s1 * 1.f1 * 2e1-BIAS

(-1)s2 * 1.f2 * 2e2-BIAS

(-1)s1 xor s2 * (1.f1*1.f2) * 2(e1+e2-BIAS)-BIAS

x
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Latency

4/5float2fix(unsigned/signed)

4/5fix2float(unsigned/signed)

14fp_sqrt

14fp_div

3fp_mul

4fp_add / fp_sub

2rnd_norm

0denorm

Latency
(clock cycles)

Module

Clock rate of each module is similar
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Outline
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� K-means clustering application for 
multispectral satellite images using the 
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� Conclusions and future work
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Algorithms for Division and Square 
Root

� Division
– P. Hung, H. Fahmy, O. Mencer, and M. J. Flynn, “Fast division 

algorithm with a small lookup table," Asilomar
Conference,1999

� Square Root
– M. D. Ercegovac, T. Lang, J.-M. Muller, and A. Tisserand, 

“Reciprocation, square root, inverse square root, and some 
elementary functions using small multipliers," IEEE 
Transactions on Computers, vol. 2, pp. 628-637, 2000
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Why Choose These Algorithms?

� Both algorithms are simple and elegant
– Based on Taylor series 
– Use small table-lookup method with small multipliers

� Very well suited to FPGA implementations
– BlockRAM, distributed memory, embedded multiplier
– Lead to a good tradeoff of area and latency

� Can be fully pipelined
– Clock speed similar to all other components
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Division Algorithm
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Division Algorithm – Continue
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Division – Data Flow

Dividend X Divisor Y

Multiplier Lookup Table

Multiplier

Result

2m bits

2m bits2m bits

2m bits m bits

2m+2 bits 2m+2 bits

hY

21 hY

lh YY −
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Square Root – Data Flow

∈

BMY ×=
Reduction

Evaluation

Postprocessing
Multiplier

Y

A

B=f(A)M

sqrt(Y)

A2 A3 A400...00

Reduce the input Y 
to a very small number A

Compute first terms
of Taylor series

BMY ×=
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Square Root – Reduction
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Square Root - Evaluation

^2 Multiplier
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Multiple Operand
Signed Adder

A

B

A2*A2 A2*A3

A2*A2*A2

A2

A2 A2A3

0...00

4j bits

j bits j bitsj bits

Multiplier
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Square Root – Post Processing

Multiplier

M

4j bits

BMY ×=

B

4j bits

Y

4j bits
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Results Mapping to Hardware

� Designs specified in VHDL

� Mapped to Xilinx Virtex II FPGA (XC2V3000)
– System clock rates up to 300 MHz
– Density up to 8M system gates
– 14,336 slices
– 96 18x18 Embedded Multipliers
– 96 18Kb BlockRAM (1,728 Kb)
– 448 Kb Distributed Memory

� Currently targeting Annapolis Wildcard-II
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Results - FP Divider on a XC2V3000

335 (2%)254 (1%)110 (1%)69 (1%)# of slices

7 (7%)1 (1%)1 (1%)1 (1%)# of BlockRAM

11010896124Throughput (million results/second)

12712910580Latency (ns)=clock period x # of clock cycles

14141010# of clock cycles to obtain final results

11010896124Maximum frequency (MHz)

99108Clock period (ns)

8 (8%)8 (8%)2 (2%)2 (2%)# of 18x18 Embedded Multiplier

32(8,23)24(6,17)16(4,11)8(2,5)Floating Point Format

The last column is the IEEE single precision floating point format
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Results - FP Square Root on a XC2V3000

401 (2%)338 (2%)253 (1%)113 (1%)# of slices

3 (3%)3 (3%)3 (3%)3 (3%)# of BlockRAM

8694112103Throughput (million results/second)

15213810788Latency (ns)=clock period x # of clock cycles

1313129# of clock cycles to obtain final results

8694112103Maximum frequency (MHz)

1211910Clock period (ns)

9 (9%)9 (9%)5 (5%)4 (4%)# of 18x18 Embedded Multiplier

32(8,23)24(6,17)16(4,11)8(2,5)Floating Point Format
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Outline

� Project overview

� Library hardware modules
� Floating point divider and square root

� K-means clustering application for multi-
spectral satellite images using the library

� Conclusions and future work
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Application : K-means Clustering for 
Multispectral Satellite Images

class 0

class 1

class 2
class 3

class 4
Every pixel Xij is 
assigned a class c j

Image spectral data
k 

= 
0 

to
 K

i = 0 to I

j =
 0

 to
 J

pixel X ij

spectral component ‘k’

Clustered image

0     1      2     3    4
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K-means – Iterative Algorithm

� Each cluster has a center (mean value)
– Initialized on host
– Initialization done once for complete image processing

� Cluster assignment
– Distance (Manhattan norm) of each pixel and cluster center

� Accumulation of pixel value of each cluster
� Mean update via dividing the accumulator value by 

number of pixels
� Division step now executed on-chip with 

fp_divide to improve performance
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K-means Clustering – Functional Units

Subtraction

Addition

Comparison

DATAPATH

Abs. Value

Pixel
Data

V
al

id
ity

Cluster
Centers

Memory
Acknowledge

Data
Valid

Datapath
Pixel
Shift

Accumulators Cluster
Assignment

Mean Update
Division

Pixel
Data
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Outline

� Project overview

� Library hardware modules
� Floating point divider and square root

� K-means clustering application for 
multispectral satellite images using the 
library

� Conclusions and future work
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Conclusion

� A Library of fully pipelined and parameterized 
hardware modules for floating point arithmetic

� Flexibility in forming custom floating point formats

� New module fp_div and fp_sqrt have small area and 
low latency, are easily pipelined

� K-means clustering algorithm applied to multispectral
satellite images makes use of fp_div
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Future Work

� More applications using
– fp_div and fp_sqrt

� New library modules  
– ACC, MAC, INV_SQRT

� Use floating point lib to implement floating point 
coprocessor on FPGA with embedded processor
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